Trigonometria no triângulo retangulo

A trigonometria possui uma infinidade de aplicações práticas. Desde a antiguidade já se usava da trigonometria para obter distâncias impossíveis de serem calculadas por métodos comuns.

Algumas aplicações da trigonometria são:

  • Determinação da altura de um certo prédio.

  • Os gregos determinaram a medida do raio de terra, por um processo muito simples.

  • Seria impossível se medir a distância da Terra à Lua, porém com a trigonometria se torna simples.

  • Um engenheiro precisa saber a largura de um rio para construir uma ponte, o trabalho dele é mais fácil quando ele usa dos recursos trigonométricos.

  • Um cartógrafo (desenhista de mapas) precisa saber a altura de uma montanha, o comprimento de um rio, etc. Sem a trigonometria ele demoraria anos para desenhar um mapa.

Tudo isto é possível calcular com o uso da trigonometria do triângulo retângulo.

 

No triângulo retângulo existem algumas importantes relações, uma delas é o Teorema de Pitágoras, que diz o seguinte: “A soma dos quadrados dos catetos é igual ao quadrado da hipotenusa”. Essa relação é muito importante na geometria, atende inúmeras situações envolvendo medidas.

As relações trigonométricas existentes no triângulo retângulo admitem três casos: seno, cosseno e tangente.

Vamos determinar as relações de acordo com o triângulo BAC com lados medindo a, b e c.



senoB = b/a
cossenoB = c/a
tangenteB = b/c

senoC = c/a
cossenoC = b/a
tangenteC = c/b

requisites necessários: